1. Darwin, G.H., On variations in the vertical due to elasticity of the Earth's surface, Phil. Mag., Ser. 5, col. 14, N. 90, 409--427, 1882.
  2. Farrell, W.E, Deformation of the Earth by Surface Loads, Rev. Geophys. and Spac. Phys., vol. 10(3), pp. 751--797, 1972.
  3. Kalnay E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetma, R. Reynolds, M. Chelliah, W. Ebisuzaki, W.Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne and D. Joseph, The NCEP/NCAR 40-Year Reanalysis Project, Bullet. Amer. Meteorol. Soc., vol. 77, pp. 437--471, 1996.
  4. Lefevre, F., F.H. Lyard, C. Le Provost and E.J.O. Schrama, FES99: a global tide finite element solution assimilating tide gauge and altimetric information, J. Atmos. Oceanic Technol., vol. 19, pp.1345--1356, 2002.
  5. Manabe, S., T. Sato, S. Sakai, K. Yokoyama, Atmospheric load effect on VLBI observations, Proc. of the AGU Chapman conference on geodetic VLBI: Monitoring global change, NOAA TR NOS 437, NGS 49, Washington D.C., pp.111--122, 1991.
  6. MacMillan, D.S. and J.M. Gipson, Atmospheric pressure loading parameters from very long baseline interferometric observations, J. Geophys. Res., vol. 99(B9), pp. 18,081--18,087, 1994.
  7. Ponte, R.M. and Ray, R.D., Atmospheric pressure correction in geodesy and oceanography: A strategy for handling air tides, Geophys. Res. Let., vol. 29, (24), 2153, doi:10.1029/2002GL016340, 2002.
  8. van Dam, T.M. and T.A. Herring, Detection of atmospheric pressure loading using Very Long Baseline Interferometry measurements, J. Geophys. Res. 99(B3), pp. 4505--4518, 1994.
  9. van Dam, T.M., G. Blewitt, and M. Heflin, Detection of atmospheric pressure loading using the Global Positioning System, J. Geophys. Res., vol. 99(B12), pp. 23,939--23,950, 1994.
  10. van Dam, T.M. and J. Wahr, Displacements of the Earth's surface due to atmospheric loading: Effects on gravity and baseline measurements, J. Geophys. Res., vol. 92, pp. 1281--1286, 1987.
  11. Wunsch, C. and D. Stammer, Atmospheric loading and the "inverted barometer" effect, Rev. Geophys., vol. 35, pp. 117--135, 1997.
  12. van Dam, T., Z. Altamimi, X. Collilieux, and J. Ray (2010), Topographically induced height errors in predicted atmospheric loading effects, J. Geophys. Res., 115, B07415, doi:10.1029/2009JB006810
  13. Carrere L., F. Lyard, M. Cancet, A. Guillot, N. Picot, Finite Element Solution FES2014, a new tidal model — Validation results and perspectives for improvements, presentation to ESA Living Planet Conference, Prague 2016.
  14. Dobslaw, H., Thomas, M., Simulation and observation of global ocean mass anomalies, J. Geophys. Res., 112, C05040, doi: 10.1029/2006JC004035. 2007.
  15. Gelaro, R., W. McCarty, M. J. Suarez, R. Todling, A. Molod, L. Takacs, C. Randles, A.. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. da Silva, W. Gu, G.-K. Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz, and B. Zhao, The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), accepted by Journal of Climate, doi: 10.1175/JCLI-D-16-0758.1, 2017.
  16. Molod, A, Takacs, L., Suarez, M., Bacmeister, J., Song, I.-S., Eichmann, A., The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna, NASA/TM--2012, 104606, vol.~28, 2012.
  17. R. Ray, Precise comparisons of bottom-pressure and altimetric ocean tides, JGR, Oceans, Vol. 118, 4570–4584, doi:10.1002/jgrc.20336, 2013
  18. Reichle, R. H., C. S. Draper, Q. Liu, M. Girotto, S. P. Mahanama, R. D. Koster, and G. De Lannoy, Assessment of MERRA-2 land surface hydrology estimates. J. Clim, 30, 8, 2937-2960. doi:10.1175/JCLI-D-16-0720.1, 2017.

Back to the International Mass Loading Service.
This page was prepared by Leonid Petrov ()
Last update: 2017.06.20_15:56:18